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Chapter  4 
 

Formation of Dendr itic Branching Patterns 
 
Jaap van Pelt, Bruce P. Graham, and Harry B. M. Uylings 
 
 
Understanding the enormous diversity of neuronal shapes and their impact on neuronal 
function is a major challenge in neuroscience. Much experimental effort has been dedicated to 
the reconstruction of 3D neuronal morphologies, to the quantification of shape characteristics, 
and to the measurement of electrophysiological properties. Neurons attain their shapes as the 
result of a developmental process in which many cellular and molecular processes are 
involved. Understanding neuronal morphology therefore requires quantitative insight into 
these processes as well as a powerful framework for the description of morphology. This 
chapter reviews the different modeling approaches used in studying the morphology of 
dendritic branching patterns. Detailed examples are given of a stochastic dendritic growth 
model and of models of intracellular mechanisms in neurite outgrowth.  
 
4.1 Neurobiological Background 
 
4.1.1 Neuronal Morphology 
 
Neurons are characterized by the shape of their axonal and dendritic arborizations. Axons 
enable the neuron to deliver action potentials to local and remote target neurons (axons thus 
form the substrate of neuronal connectivity), while dendrites serve as target structures and 
receive and integrate incoming signals.  

The contribution of an individual, active synapse, located at a particular site on the 
dendritic tree, to the firing probability of the neuron depends on, among other factors, the 
amplitude of the post-synaptic potential, the characteristics of the path to the soma, the 
momentary state of the dendritic membrane and its ion channels, and the spatial and temporal 
relations with other active synapses. Dendritic morphology is therefore strongly involved in 
the electrical signal transduction properties of a neuron. For a detailed discussion on the 
functional role of dendritic morphology, see Chapter 13. 

Dendritic and axonal arborizations show an enormous diversity among and within 
neuron classes.  It is tempting to assume that the morphology of a neuron contributes to its 
functional specialization, i.e., to its role in neuronal information processing. However, lack of 
a thorough understanding of how information is ‘encoded’  or processed makes it very difficult 
to give a quantitative assessment of this role. The functional role of morphological 
specializations remains therefore largely unknown. 

Neuronal morphology is the outcome of a developmental process, and understanding the 
characteristics of neuronal morphology requires the understanding of this developmental 
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process. To this end, one needs not only data and tools for efficiently and quantitatively 
describing neuronal morphologies, but also data and tools for describing neuronal 
morphogenesis. 
 
4.1.2 Neurite Outgrowth and Neuronal Morphogenesis 
 
In this section, we give a brief overview of some of the major stages in neuronal development. 
 
Cell Division and Migration 
Rat cerebral cortex neurons are mainly generated from embryonic day 10 (E10) until birth. For 
the human brain, the period of major neocortical neuron formation is between approximately 6 
and 18 weeks gestation (Rakic, 1995; Uylings, 2000). According to the present view, 
pyramidal neurons migrate radially from the neocortical proliferative zone of the cerebral wall 
towards their final location, whereas the majority of the non-pyramidal neurons are derived 
from the medial ganglionic eminence via tangential migration (Parnavelas, 2000).  
 
Neur ite Outgrowth  
After migration to their final location, neurons start to grow out neuritic processes. In the early 
phase of neuronal outgrowth, these neuritic processes differentiate, whereby one of the 
neuron’s neurites becomes an axon and the others dendrites (see further Chapter 3). Axons 
continue their advanced outgrowth rate, arborize, and migrate to their targets (axon 
guidance—see Chapter 5), where they make synaptic connections. Pyramidal and 
non-pyramidal neurons accelerate their dendritic growth after the ingrowth of thalamic and 
other subcortical fibers. In rat cortex, the period of fastest dendritic outgrowth is between 
postnatal days 8 and 14, reaching mature dendritic extent around postnatal day 18 (Parnavelas 
and Uylings, 1980; Uylings et al., 1994; Koenderink and Uylings, 1995).  
 
Role of Growth Cones in Neur ite Elongation and Branching 
Neurite elongation and branching are mediated by growth cones, i.e., specialized structures at 
the tip of growing neurites. Growth cones consist of a central core, lamellae sheets, and 
filopodia, all of which contain filamentous actin. Elongation of neurites proceeds by growth 
cone migration and requires the lengthening of the microtubule cytoskeleton, by 
polymerization of tubulin, in the trailing neurites. Dendritic branching is initiated by the 
splitting of a growth cone, a process that requires a reorganization of the growth cone’s actin 
cytoskeleton (for a recent review of the molecular mechanisms involved in branching, see 
Acebes and Ferrus, 2000). The actin cytoskeleton is modified by the activity of a number of 
small GTPase enzymes, the Rho family, with Rac promoting lamellipodium and membrane 
ruffles, Cdc42 polymerizing actin into filopodia, and especially RhoA being involved in 
dendritic branching. Initial growth cone splitting and filamentous actin branch formation is 
further consolidated by the formation of a more rigid microtubular scaffold. Neural branching 
is subject to fine modulation, with Rho proteins acting as molecular switches and integrating 
extracellular and intracellular signals to regulate rearrangement of the actin cytoskeleton. By 
altering neuronal network formation, mutations in proteins involved in Rho-dependent 
signaling may possibly result in mental retardation (Ramakers, 2000). For the dependence of 
neurite outgrowth on electrical activity and intracellular calcium, see Chapters 3 and 6. 
Growth cones have both a motor and a sensory function. They sense the local environment 
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through receptor- and ion-channel-mediated signalling, adhere to local cues, exert elastic 
tension, and react by internal reorganization. The actual behavior of a growth cone is the 
momentary outcome of this multitude of processes and is an integration of environmental 
information (adhesivity, chemorepellants, chemoattractants) and internal processes 
[(de)polymerization of actin and microtubules, stabilization of  microtubules by microtubule 
associated proteins, transport of structural proteins, signalling pathways involving calcium and 
Rho proteins, electrical activity, and gene expression].  
 
Overshoot and Regression  
After a mature neuronal morphology has formed, further minor alterations may occur in 
different cell types, e.g., some further growth in Layer II/III pyramidal neurons and some 
minor regression in Layer IV multipolar non-pyramidal neurons (Uylings et al., 1994). Some 
neocortical neurons show pronounced dendritic regression (e.g., in the apical dendritic field in 
the callosal, small layer V pyramidal cell (e.g., Koester and O©Leary, 1992)), but this appears 
to be the exception rather than the rule. A clear pattern of outgrowth, regression, and regrowth 
has been observed in rat cerebellar Purkinje cells (PC). Quackenbush et al. (1990) and 
Pentney (1986) have shown that PC networks sampled from 18-month-old rats had fewer 
terminal segments than those from 10-month-old rats, while PC networks from 28-month-old 
rats were intermediate in size. Woldenberg et al. (1993) analyzed the distributions of terminal 
segment numbers and argued for the simultaneous existence of growing and declining 
subpopulations of PC cells.  
 
This brief overview of neuronal development shows that many mechanisms are involved in 
neurite outgrowth, including the intracellular machinery, the neuron’s response to the 
extracellular environment, and neuronal electrical activity. Cline (1999) recently formulated a 
consensus view that dendritic structure and function develops as part of a continual dynamic 
process that balances the effects of neuronal activity, growth-promoting and growth-inhibiting 
proteins, and homeostatic mechanisms. Additionally, he emphasized the notion that dendrites 
develop as part of a neural circuit, with regulation of development by synaptic activity, 
activity-regulated proteins, and activity-induced genes. 

All processes and mechanisms involved in dendritic development exert their effects on 
neurite elongation and branching through the influence they have on the actin and microtubule 
cytoskeleton—which makes understanding the cytoskeletal mechanisms in dendritic 
morphogenesis of crucial importance. 
  
4.2 Questions and Approaches in Modeling Neuronal Morphology 
 
4.2.1 Questions 
 
The preceding section made it clear that understanding morphological diversity in neurons is 
an extremely challenging goal. Experimental approaches for longitudinal, in vivo studies of 
neurite outgrowth and neuronal morphogenesis are still limited, although high resolution 
time-lapse confocal imaging techniques offer promising prospects. But even if all 
experimental data are available, computational approaches remain essential for describing the 
processes in their quantitative interrelationships and their consequences for neuronal 
development. 
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Important questions that can be addressed by computational approaches include (1) how 
can neuronal morphology and developmental changes be described, (2) how does neuronal 
morphology emerge from the dynamic behavior of growth cones, and (3) which mechanisms 
are involved and how do they contribute to growth cone behavior and neurite outgrowth? 
There is not a single computational approach to all of these questions; each question requires 
its own particular strategy, which will also depend on the level of granularity of the 
description.  

Addressing the first question requires a set of shape factors that capture the characteristic 
shape properties of neuronal morphology. Neuronal morphogenesis may then be described by 
the way in which these morphological characteristics change over time. On the basis of these 
quantitative descriptions, we may search for the most efficient algorithms that can produce 
arborizations that have similar morphological characteristics as the neuronal ones. 

The second question can be approached by quantifying the dynamic actions of growth 
cones and studying what variety of morphologies will emerge from these actions. As a first 
step, we may describe growth cone elongation and branching as the outcomes of a stochastic 
process.  Such an approach will give insight into how the growth cones’  elongation and 
branching probabilities translate into typical shape properties of the model dendritic trees 
produced. These model trees may then be compared with neuronal dendritic trees, in an 
attempt to find agreement by optimizing the stochastic growth rules. In further refinements, 
we may approximate growth cone dynamics at finer detail by including state- and 
time-dependent conditions in the stochastic growth rules. 

The third question is the most complex one, as it concerns the multitude of mechanisms 
and their interactions. As a first step, we may focus on a particular mechanism and explore its 
role in neurite outgrowth. For instance, we may focus on the cytoskeleton and build 
computational tools for studying quantitatively the cytoskeletal dynamics and their 
contribution to the behavior of growth cones. Alternatively, we may focus on regulatory 
mechanisms; this requires computational tools for quantitatively describing the biochemical 
and signaling pathways that target the cytoskeletal dynamics. From a more general point of 
view, we may ask the question whether neurite outgrowth is subject to basic (biophysical) 
constraints, as imposed by conservation of matter and energy or by limited resources (possibly 
leading to competitive phenomena). Addressing this question requires biophysical models of 
production, transport, use, and decay of key proteins involved in neurite outgrowth. An 
interesting question is also whether the mechanisms involved in neurite outgrowth are 
operating in an orchestrated way or more or less independently. This question is far from 
trivial, because even when two mechanisms lack direct interaction and thus may seem 
independent, the complexity of the full system may include indirect links, resulting in an 
effective dependency (homeostasis—of, for example, electrical activity or the intracellular 
calcium concentration—may produce such effective correlative behavior; see also Chapter 6). 
Related questions are whether or not growth cones may be considered as operating 
independently from one another, just under control of local mechanisms, and to what extent 
axonal and dendritic outgrowth is correlated.  
 
4.2.2 Parameterization of Neuronal Morphology 
 
Neurons may readily be distinguished by the global shape of their dendritic field. Recently, 
Fiala and Harris (1999) reviewed different schemes for characterizing the global shape of 
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dendritic fields: (1) in terms of extent, density, and polarity (e.g., bipolar, multipolar); (2) on 
the basis of a selective, sampling or space-filling appearance; and (3) in terms of regular 3D 
geometrical bodies (spherical, laminar, cylindrical, (bi)conical, or fan shaped).  

For a detailed description of neuronal arborizations, it is necessary to include both 
topological and metrical characteristics. The topological structure is defined by the number of 
segments and the connectivity pattern of the segments as a rooted tree. It determines, for 
example, the distribution of segments versus centrifugal order (Fig. 4.1), the division of 
segments in subtrees at branch points (indicated by the tree-asymmetry index (Van Pelt et al., 
1992)), and the frequencies of different types of branch points (e.g., Horsfield et al., 1987; 
Sadler and Berry, 1983).  Metrical properties include the lengths and diameters of segments, 
their curvature, the 3-dimensional embedding of the arborization, and further details such as 
the number and shape of dendritic spines. Metrical characterization can be in terms of length 
and diameter distributions and in terms of spatial densities of segments or branch points. 
Measures that are a combination of topological and metrical properties include radial 
distribution functions of dendritic length or the number of branch points (for a review, see 
Uylings et al., 1986). Morphological characterization thus requires many measures, dependent 
on the required detail of the analysis. For example, Ipiña et al. (1987) applied multivariate 
analysis techniques on a set of 10 variables to analyse developmental effects and ageing, and 
Cannon et al. (1999) used a large set of dendritic measures to differentiate between different 
populations of hippocampal neurons. 

 
 

 
 
Figure 4.1  
(A) Tree elements. Intermediate and terminal segments, labeled by a centrifugal ordening scheme. (B) 
Distribution of number of segments versus centrifugal order.  
 
4.2.3 Stochastic Models of Neuronal Arbor izations 
 
Different algorithms have been developed for generating neuronal arborizations with 
(statistically) similar shape properties as their empirically observed counterparts. 

One class of models focuses on the radial distribution of dendrites, in terms of 
intersections with spheres (e.g., Ten Hoopen and Reuver, 1970, 1971), or of segment number 
per centrifugal order (e.g., Kliemann, 1987). Focussing on the topological structure, Devaud et 
al. (2000) proposed a parsimonious description for the variation in segment order distributions 
between different dendritic trees by assuming a simple two parameter model for the 
centrifugal-order-dependent splitting probabilities. Using this model, they found good 
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matching with cultured honeybee (olfactory) antennal lobe neurons.  
Another class of models, focussing on both topological and metrical aspects, uses the 

empirical distribution functions for segment lengths and diameters, as well as their 
correlations, to generate random dendritic morphologies by a repeated process of random 
sampling of these distributions (e.g., Hillman, 1979, 1988; Burke et al., 1992; Tamori 1993; 
Ascoli and Krichmar, 2000).  

A third class of models, stochastic growth models, uses hypothetical, stochastic growth 
rules for branching and elongation in the generation of random dendritic trees. Topological 
growth models aim at explaining topological variation by assuming that the branching 
probability depends on the type of segment (intermediate or terminal) (e.g., Berry et al., 1975) 
as well as on the centrifugal order (see Fig. 4.1) of the segment (Van Pelt and Verwer, 1986). 
These studies indicated how the mode of branching determines the eventual variation in 
dendritic topological structures and showed that the empirically observed topological variation 
in dendritic trees was consistent with branching of predominantly terminal segments, as was 
also found in an extensive study of dendrites of motoneurons (Dityatev et al., 1995). Segment 
length distribution, a metrical property, depends on both the branching and the elongation 
process. Van Pelt et al. (2001a) extended the topological growth model by including neurite 
elongation into the already optimized branching process. By this separation of elongation and 
branching, they were able to match many topological and metrical shape properties of 
dendrites of a variety of cell types, including basal dendrites of Wistar-rat cortical layer 5 
large pyramidal neurons (Van Pelt and Uylings, 1999a), basal dendrites of Wistar-rat cortical 
layer 5 small pyramidal neurons (Van Pelt and Uylings 1999b), basal dendrites of S1-rat 
cortical layer 2/3 pyramidal neurons (Van Pelt et al., 2001a), guinea pig cerebellar Purkinje 
cell dendritic trees (Van Pelt et al., 2001a), and cat deep layer superior colliculus neurons 
(Van Pelt et al., 2001b). These studies demonstrated that the empirically observed 
morphological variability in dendrites can emerge from a growth process in which branching 
and elongation events show variation as well, being described by the probability functions in 
the model. For these results, it was necessary to assume (1) that branching depends on the 
total number of terminal segments and on the centrifugal order of each terminal segment, and 
(2) that after branching, newly formed (stabilized) daughter segments have initial lengths, to 
account for the small number of short intermediate segments observed in all segment length 
distributions. Empirical growth curves for the number of terminal segments offer the 
possibility to gauge the time scale for the branching process and to predict absolute elongation 
rates.  

Other metrical studies include those of Nowakowski et al. (1992), who studied segment 
length distributions assuming an increasing but saturating branching probability with segment 
length. They found that it was necessary to include an inhibition of branching for some 
distance beyond a branch point.  Ireland et al. (1985) studied growth of apical dendritic trees 
in rat entorhinal cortex by means of analytical, time-dependent functions for elongation and 
branching and found that terminal growth velocities decrease with time. Li et al. (1992, 1995) 
developed a model for neurite elongation and branching including interactions with a 
morphogen gradient; they found evidence for the existence of lateral inhibition as well as a 
role of filopodial tension in branching. Studying the lengths of intermediate and terminal 
segments during phases of growth, decline, and regrowth of rat Purkinje cell dendritic trees, 
Woldenberg et al. (1993) found evidence for Fibonacci scaling in segments lengths.  
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4.2.4 Mechanistic Models of Neurite Outgrowth and Neuronal Morphogenesis 
 
Stochastic growth models do not consider the underlying mechanisms involved in neurite 
elongation and branching. A different class of models can be distinguished that is concerned 
with these mechanisms. Because of the multitude of mechanisms involved, these models 
generally focus on particular mechanisms and explore their implications for neurite 
outgrowth.  

Van Veen and Van Pelt (1994) studied elongation and branching under the control of 
production, transport, and polymerization of tubulin. They predicted that small differences in 
polymerization rates would result in competitive phenomena in the elongation rates of 
daughter segments at branch points. This model has recently been extended by Van Ooyen et 
al. (2001) (see Section 4.3.4).  

Graham et al. (1998) and Graham and Van Ooyen (2001) have investigated the possible 
intracellular origins of the dependence of branching on the number of terminal segments and 
their centrifugal order (see Sections 4.3.2 and 4.3.3). 

Hely et al. (2001) have modeled both the rate of terminal branching and the rate of 
elongation as functions of the stability of microtubule bundles in the growth cone. The 
stability depends on the phosphorylation state of microtubule-associated protein MAP2, which 
is in turn determined indirectly by calcium influx. Dephosphorylated MAP2 favors elongation 
by promoting microtubule polymerization and bundling. Phosphorylation of MAP2 disrupts 
its cross-linking of microtubules and thus destabilizes the microtubule bundles and promotes 
branching. A wide variety of tree characteristics are produced by the model depending on the 
relative rates of phosphorylation and dephosphorylation of MAP2, the production and 
transport of MAP2, and calcium influx. 

In her PhD thesis, Aeschlimann (2000) introduced a biophysical model of the sensory 
function and the motor behavior of growth cones. On the basis of this model, she made 
quantitative predictions for the elastic and inelastic elongation and for the shear stress and 
bending forces within growth cones.  
 
4.2.5 Modeling Arborizations in Other Biological/(Geo)physical Areas 
 
Branching patterns are common structures in nature, and in many fields of research stochastic 
and mechanistic models have been used to study their properties. There has been 
methodological cross fertilization between these fields of research. For instance, topological 
studies of river systems in the sixties and seventies (e.g., Shreve, 1966; Dacey and Krumbein, 
1976) have stimulated topological growth studies of neuronal branching patterns (e.g., Berry 
et al., 1975; Hollingworth and Berry, 1975), of lung branching patterns (Horsfield and 
Woldenberg, 1986); Horsfield et al., 1987), of microvessel networks (Ley et al., 1985), and of 
plant root systems (Fitter et al., 1991). In turn, further generalization of the topological models 
for neuronal arborizations have produced a new view on random river topology and headward 
growth (Van Pelt et al., 1989).  
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4.3 Detailed Examples of Models of Neuronal Morphology 
 
4.3.1 Dendritic Growth Model 
 
The dendritic growth model aims at describing the morphology and variability of dendritic 
trees for a wide variety of neuron types (for reviews, see Van Pelt and Uylings, 1999a; Van 
Pelt et al., 2001a). Briefly, the model describes dendritic growth by elongation and branching 
of segments. Because in reality many intracellular and extracellular mechanisms are involved 
in the behavior of growth cones (which mediate elongation and branching), it is assumed that 
elongation and branching can be described as stochastic processes. The branching process is 
defined by a branching probability for each terminal segment:  
 

E
i

S
ii nCNBp --= gg 2)/()(       (4.1) 

 
evaluated at each time bin i (i=1,…,N) during the developmental period T.  In Eq. (4.1), the 
branching probability is assumed to depend on the growing number of terminal segments, in , 
according to parameter E, and on the centrifugal order g  of the segment, according to 
parameter S.  The basic branching parameter B denotes the expected number of branching 
events at an isolated segment in the full period. The ratio NB  denotes the basic branching 

probability per time bin.  Parameter � =

-= i jn

j

S
ii nC

1
2 g  is a normalization constant and must 

be evaluated at each time bin with a summation over all in  terminal segments. The number of 
time bins, N, can be chosen arbitrarily but such that the branching probability per time bin 
remains much smaller than one, making the probability of more than one branching event per 
time bin negligibly small. To describe the branching process in continuous time, the time bin 
scale needs to be mapped onto an absolute time scale. Time bins will obtain equal durations in 
a linear mapping but different durations in a non-linear mapping. The equation for the 
branching probability per time bin transforms into a branching probability per unit of time:  
 

E
t

S
tt nCtDp --= gg 2)()( ,      (4.2) 

 
where )(tD  denotes the basic branching rate parameter per unit of time ( )(tD  is not constant 
for a non-linear mapping). 

After a branching event, newly formed daughter segments are given a 
gamma-distributed, randomly chosen initial length with mean inl  and standard deviation 

inls , 

and a gamma-distributed, randomly chosen elongation rate. The developmental period may 
consist of a first phase of elongation and branching, and a subsequent phase of elongation 
only, with elongation rates bev  and ev , respectively, both with a coefficient of variation vcv . 
A summary of the model parameters is given in Table 4.1. 

During outgrowth, the total number of terminal segments increases at each branching 
event. If the branching probability is independent of the total number of terminal segments, 
branching is prolific, leading to very large trees. This is shown in Fig. 4.2A for parameter 
value 0=E , resulting in an exponential declining degree distribution. For positive values of 
E, branching probability goes down with increasing number of terminal segments, leading to 
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degree distributions with a modal shape that becomes narrower at larger E values. By its 
control on the increase of the total number of terminal segments, parameter E may be 
interpreted as representing competition during dendritic branching.  
 
 
Table 4.1.  
Summary of parameters used in the dendritic growth model.  
________________________________________________________________________ 
  Aspect of growth     Related to 
________________________________________________________________________ 
 
Optimizing  parameters 
B   Basic branching parameter     Segment number 
E  Size-dependence in branching     Segment number 
S   Order-dependence in branching     Topology 

inla  (� m)  Initial length—offset in gamma distribution   Segment length 

inl   (� m)  Initial length—mean      Segment length 

inls (� m)  Initial length—SD      Segment length 

bev  (� m/h)  Mean elongation rate in ‘branching/elongation phase’  Segment length 

ev   (� m/h)  Mean elongation rate in ‘elongation phase’    Segment length 

vcv    Coefficient of variation in elongation rates   Segment length 

 
Experimental parameters 

0T   (h)   Start of growth 

beT  (h)   End of branching/elongation phase 

eT   (h)   End of elongation phase 

td   (� m)  Terminal segment diameter—mean    Segment diameter 

tds (� m)  Terminal segment diameter—SD     Segment diameter 

e    Branch power—mean      Segment diameter 

es    Branch power—SD      Segment diameter 

__________________________________________________________________________ 
Notes: A distinction is made between optimizing parameters, whose values are subjected to optimization, and 
experimental parameters, whose values are taken (in)directly from experimental observations. Note that the 
segment diameter parameters are not part of the growth model, but are used afterwards to assign diameter values 
to the skeleton trees produced by the model. It is assumed that the gamma distributions for the elongation rates 

have zero offset ( 0=va ). SD, standard deviation. 

 
 
 



Ch4_VanPelt.doc 

 

10 

 
Figure 4.2 
(A) Distributions of the number of terminals per dendritic tree. The model trees are randomly generated 
by the dendritic growth model. The distributions, calculated for several values of the parameter E , 
demonstrate the control of the ‘competition parameter’  E  on the proliferation of the number of 
terminal segments during dendritic branching. (B) Relation between the mean and standard deviation of 
the distribution of the number of terminal segments of trees randomly generated by the dendritic growth 
model for different values of E. 
 
Application of the Dendr itic Growth Model to Wistar  Rat Cor tical Layer  IV Multipolar  
Nonpyramidal Neurons 
 
The morphological data of Wistar rat visual cortex layer IV non-pyramidal neurons are 
obtained from a developmental study by Parnavelas and Uylings (1980), with detailed 
reconstructions for different age groups. Growth starts in the first postnatal week and shows 
an ongoing increase in the number of segments and total dendritic length up to postnatal (PN) 
day 16. After this growth phase, terminal segments show further elongation up to at least 
PN90. In the present study, the growth model is applied to the PN16 data set and studied for 
the following shape parameters: total dendritic length, number and lengths of intermediate and 
terminal segments, pathlengths, centrifugal order of the segments, and the tree-asymmetry 
index (as a measure of the topological structure, or connectivity pattern, of the segments). 
Observed mean and SD values are listed in Table 4.2; the frequency distributions are shown in 
Fig. 4.3 as dashed histograms. First, the branching process was studied by optimizing the 
branching parameters B, E, and S. The results are illustrated in Fig. 4.4A, showing the 
predicted growth curve of the number of terminal segments. The panel shows an excellent 
matching with the empirically observed data at PN16, but a mismatch with the data in earlier 
age groups at 4, 6, 8, 10, 12 and 14 days PN, when equal duration time bins are assumed. 
Applying a nonlinear mapping of time bins to absolute time scale (Fig. 4.4B illustrates an 
exponential mapping with exponent 3) results in a model growth curve that matches both in 
mean and in SD the different age groups very closely (Fig. 4.4C). By the transformation to 
absolute time, a prediction can be made of the time course of the basic branching rate )(tD , 
showing a rapid decline in the first week of development (Fig. 4.4D).  
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Table 4.2.  
Mean and SD of dendritic shape parameters of observed and modeled PN16 Wistar rat visual cortex 
layer IV non-pyramidal neurons. 
____________________________________________________ ___________________ 
Shape variables     Observations    Model outcomes 
     _______________  _____________ 

No.  Mean  SD   Mean  SD 
________________________________________________________________________ 
Degree     238  3.29  2.5  3.17 2.4 
Tree asymmetry     84  0.47  0.21  0.45 0.23 
Centrifugal order    1330  1.92  1.45  1.85 1.43 
Total dendritic length (� m)   238  169  164  159 127 
Terminal segment length (� m)   782  38.6 35.1  38.6 39.1 
Intermediate segment length (� m)  537  17.7  19.2  16.8 20.4 
Pathlength (� m)    782  75.2  48.4  70.3 40.8 
________________________________________________________________________ 
 
 

 
Figure 4.3  
Frequency distributions of dendritic tree shape parameters of Wistar rat visual cortex layer IV 
multipolar nonpyramidal neurons (dashed histograms) and of model generated trees (continuous thick 
lines), using the optimised parameter values given in Table 4.1. The panels show the frequency 
distributions for the number of terminal segments (A), centrifugal order of the segments (B), total 
dendritic tree length (C), intermediate segment length (D), terminal segment length (E), and pathlength 
(F). 
 

The elongation process was studied by optimizing the parameters ina , inl , and 
inls  for 

the initial lengths at the time of branching, and the parameters bev  and vcv  for the sustained 

elongation rate. The shape properties of the random trees generated with these optimized 
parameters (Table 4.3) are listed in Table 4.2 for their mean and SD, and plotted as dashed 
histograms in Fig. 4.3. These outcomes show that the model trees conform closely to the 
observed dendrites in most of their statistical shape properties.  

The decline of the branching probability with increasing number of terminal segments 
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via parameter E may be interpreted as a competition effect when growth cones compete for 
some limited resource. The positive value of 106.0=E  thus suggests that such competitive 
behavior also occurs during outgrowth of these nonpyramidal dendrites.  
 

 
Figure 4.4 
(A) Comparison of the observed mean (open circles) and standard deviation (error bars) of the number 
of terminal dendritic segments at different time points (i.e., 4, 6, 8, 10, 12, 14, and 16 days post-natal 
(PN)) during development of Wistar rat cortical layer IV multipolar nonpyramidal neurons, with the 
growth curve predicted by the dendritic growth model for the parameters optimized for the 16 days PN 
group. The time bins represent a linear time scale with time bin 500 corresponding to 16 days PN. The 
dotted lines indicate the time bins at which the model growth curves attain similar values as the 
observed data points. (B) A nonlinear exponential mapping of time bins onto absolute time in order to 
match the model predicted growth curve through the observed data points. (C) Comparison of the 
model predicted and observed growth curve for the number of terminal segments, plotted against an 
absolute time scale. Note the good matching of the standard devations. (D) Time course of the basic 
branching rate per hour during dendritic development, as predicted by the growth model for the 
exponential bin-to-time transformation. A constant mean elongation rate has been assumed.  
 
Table 4.3.  
Optimized values for growth parameters (see Table 4.1) to match the statistical shape properties of 
PN16 Wistar rat cortical layer IV non-pyramidal cell basal dendrites, given in Table 4.2.  
_______________________________________________________________________ 
Growth model parameters        Experimental 
_______________________________________________________________________ 
B  E  S  ina  inl  (� m)  

inls  bev  (� m/h)  vcv  0T  (h)  beT  (h) 

1.26 0.106 0 0 4  3 0.16  0.9 24 384 
_______________________________________________________________________ 
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4.3.2 Intracellular  Signal Model 
 
The dendritic growth model (see Section 4.3.1) reveals that the branching probability may 
change with increasing numbers of terminals in the growing tree and with the centrifugal 
order of each terminal. Although this model characterizes these dependencies, it does not 
specify any particular biophysical mechanisms that may be their underlying cause. The 
intracellular signal model is an attempt at a growth model in which branching is modulated by 
the number of terminals and their centrifugal order, but which also may have a physical 
instantiation in terms of intracellular processes (Graham et al., 1998). 

The intracellular signal model describes the growth process as one in which the 
probability that a terminal branches is proportional to the amount of some substance, v, in the 
terminal. Branching is still described as a stochastic process, but this process is now 
modulated according to the distribution of v throughout the growing tree. The substance is 
produced in the cell body and is transported along the tree to the terminal tips. The branching 
probability of a terminal segment i is ( ) ii vNBp = .  The production and distribution of v is 

given by 
( )Env -= 1

0        (4.3) 
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where B, N, E, S, and n are as for the dendritic growth model; 0v  is the amount of substance in 

the cell body; lv  ( rv ) is the amount in the left (right) daughter segment at a branch point; pv  

is the amount in the parent segment to a branch point; and ln  ( rn ) is the number of terminals 

in the subtree emanating from the left (right) segment. The probability that a particular 
terminal i will branch is calculated by applying the above equations iteratively at each time 
step, starting with the root segment, 0. The specification of time bins and the calculation of 
segment elongation rates are as for the dendritic growth model. 

The production of v in the cell body is a function of the number of terminals, according 
to the parameter E. This modulates the terminal branching probabilities identically to the 
effect of E in the dendritic growth model. The distribution of v at branch points according to 
the value of S results in a modulation of branching probabilities that is a close approximation 
to the dendritic growth model©s dependency on centrifugal order. The difference lies in that the 
dendritic growth model requires global knowledge at each terminal tip of the number of 
terminals in the tree and their centrifugal orders. The intracellular signal model relies only on 
local knowledge at each branch point of the size of the subtrees emanating from it. Such 
knowledge may be gained from a retrograde signal in the form of a molecule produced at each 
terminal and transported to the cell body. Another possible signal arises from changes in 
segment diameters as the tree grows. Many actual dendritic trees exhibit an approximate 
power law relationship between the diameters of parent and daughter segments at branch 
points. If, during growth, parent segments increase their diameters according to such a power 
law as new terminal branches are created, then the diameter of any segment is an indication of 
the size of the subtree below it. Thus a transport mechanism that splits the amount of available 
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substance at a branch point according to the relative diameters of the daughter branches would 
instantiate this model. 

Examples of the tree characteristics produced by the intracellular signal model are given 
in Fig. 4.5 and Fig. 4.6. These figures show the degree and centrifugal order of trees grown 
using the dendritic growth model parameters optimized to data drawn from either rat 
multi-polar nonpyramidal cells  (Fig. 4.5; see the dendritic growth model example) or the 
basal dendrites of large layer V rat cortical pyramidal neurons  (Fig. 4.6; Van Pelt and 
Uylings, 1999a). In both examples, the degree and centrifugal order distributions closely 
match those produced by the dendritic growth model. 
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Figure 4.5  
Distributions of the number of terminals in the fully grown trees (degree) and the segment centrifugal 
order for 1000 trees grown using either the dendritic growth (DG), intracellular signal (IS), or 
diffusional (DIFf) models. The dendritic growth model used parameters optimized to the branching 
phase of rat multi-polar nonpyramidal cell dendrites ( 26.1=B , 106.0=E , 0=S , 500=N , mean 
elongation rate 0.16 � m/hr (CV=0.9)). These identical parameter values were used with the intracellular 
signal model. For the diffusional model, the decay parameters were set to match the required E value, 
giving 0.1=I , 96.00 =g , and 04.0=ig ; segment diameters were 1 � m throughout and diffusion 

was 600=D � m2/hr.  
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Figure 4.6  
Distributions of the number of terminals in the fully grown trees (degree) and the segment centrifugal 
order for 1000 trees grown using either the dendritic growth (DG), intracellular signal (IS) or 
diffusional (DIFf and DIFs) models. The dendritic growth model used parameters optimized to the 
branching phase of rat large layer V pyramidal cell basal dendrites ( 85.3=B , 74.0=E , 87.0=S , 

264=N , mean elongation rate 0.22 � m/hr (CV=0.28); Van Pelt and Uylings, 1999a). These identical 
parameter values were used with the intracellular signal model. For the diffusional model, the decay 
parameters were set to match the required E value, giving 0.1=I , 45.00 =g , and 55.0=ig ; 

segment diameters were 1 � m throughout and diffusion was either fast ( 600=D � m2/hr; DIFf) or slow 
( 2=D � m2/hr; DIFs). 
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4.3.3 Diffusional Model 
 
The intracellular signal model does not explicitly specify a transport mechanism for the 
branch-determining substance. The diffusional model explores how the transport by diffusion 
of a branch-determining substance affects tree growth (Graham and Van Ooyen, 2001). The 
spatial production, consumption, decay, and diffusion of the substance results in a branching 
process that also shows dependency both upon the number of terminals in the growing tree 
and upon their centrifugal order. 

In this model, the branch-determining substance has concentration iC  at terminal i in the 
growing tree. Terminal segments elongate at fixed rates as determined for the dendritic growth 
model. The branching probability of terminal i is ( ) ii CNBp = . The substance is produced at 

rate I in the cell body (location 0) and decays there at rate 0g . The substance also decays (or is 

consumed by the branching process) at rate ig  in terminal i. The substance diffuses between 
its site of production and the terminal tips at rate D. The changes in concentration over time at 
these locations when there are n terminals in the growing tree are given by 
 

( )0
1 0

00
0 CC
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dt
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g      (4.6) 
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where iL  is the intracellular longitudinal distance between terminal i and the cell body, iA  is 

the available cross-sectional area (assumed uniform along the length of the branch), and iV  is 
the volume into which diffusion takes place at the terminal. 

In the steady-state, the cell body and terminal concentrations can be calculated explicitly. 
If diffusion is fast relative to segment elongation, then 
 

i
i n

I
CC

gg +
»»

0
0 .       (4.8) 

 
In this situation, the entire dendritic tree acts as one large compartment in which the 
concentration of the branch-determining substance decreases as the number of terminals, n, 
increases. Thus the branching probability also decreases with the number of terminals. 
Although not identical to the dendritic growth model dependency, En- , the effect of any given 
value of E can be approximated by selecting appropriate values for the production rate I and 
the decay rates 0g  and ig . If diffusion is slow, branch lengths and cross-sectional areas will 
affect terminal concentrations. More distant terminals may have a lower concentration than 
those closer to the cell body. Terminals clustered closely on a subtree may interact so that they 
have lower concentrations than isolated terminals, due to their combined decay rates. Branch 
diameters will influence the amount of substance transported into subtrees, as described for 
the intracellular signal model. This results in centrifugal order effects similar to that 
determined by parameter S of the dendritic growth model. 
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The model is implemented in computer simulation by calculating the concentrations iC  

at the distal ends of every segment (terminal and intermediate) in the tree and 0C  in the cell 
body. All concentrations are measured in the small volume of the last 1 � m of the segment and 
concentration differences are measured over the length of each segment. For the results shown 
here, the segment diameter is a uniform 1 � m throughout and diffusion is proportional to the 
total cross-sectional area of a segment. 

Comparisons with the dendritic growth and intracellular signal models are shown in Fig. 
4.5 and Fig. 4.6.  The dendrites of the rat multipolar nonpyramidal cells show no branching 
dependence on centrifugal order (Table 4.3, 0=S ). Consequently, a fast diffusion rate 
produces a close match in the degree- and centrifugal order distribution with the dendritic 
growth model (Fig. 4.5). Rat layer V pyramidal neuron basal dendrites do show a branching 
dependence on centrifugal order ( 87.0=S ; Van Pelt and Uylings, 1999a). In this case, fast 
diffusion does not produce a good match to the dendritic growth centrifugal order distribution 
(Fig. 4.6) because it shows no effect of centrifugal order on branching probability. This results 
in the centrifugal order distribution being skewed towards higher values than found in the 
actual trees. A better distribution results when diffusion is much slower, resulting in a 
reduction in branching probability with centrifugal order (Fig. 4.6). If segment diameters are 
set according to a power law, i.e., to approximate the real dendrites, the centrifugal order 
effect is lessened due to increased transport of substance into larger subtrees (results not 
shown). However, it is possible that transport area does not increase proportionately with 
anatomical area.  

A candidate for the branch-determining substance in the intracellular signal and 
diffusional models is tubulin. This molecule is produced in the cell body and transported 
along dendrites by a combination of diffusion and active transport (for references, see Van 
Veen and Van Pelt, 1994). In the growth cones, it is assembled into microtubules, leading to 
elongation and possibly branching, depending on the stability of the microtubules. Trees that 
result from the relative rates of elongation and branching determined by microtubule stability, 
as influenced by the phosphorylation state of microtubule-associated protein MAP2, have 
been explored in the model of Hely et al. (2001) (see Section 4.2.4). In the diffusional model, 
for realistic elongation rates, centrifugal order effects appear only at unreasonably slow 
diffusion rates. It remains to be explored whether an active transport component could lead to 
an inhomogeneous distribution of tubulin in a growing tree. 
 
4.3.4 Elongation Model 
 
The elongation model explores how intracellular molecular transport may affect the growth of 
particular dendritic segments (Van Veen and Van Pelt, 1994; Van Ooyen et al., 2001). The 
model is essentially the same as the diffusional model, except that now the concentration of 
the substance, iC , in terminal i determines the elongation rate of the segment, rather than its 
branching probability. If the substance is identified as tubulin, then the rate of change in 
segment length iL  is a function of the relative rates of assembly, ia , and disassembly, ib , of 
microtubules. The model is described by the following equations (Van Ooyen et al. 2001): 
 

iii
i bCa

dt
dL

-=        (4.9) 
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for uniform cross-sectional area and diffusional volume, and with active transport rate f. In 
Van Veen and Van Pelt (1994) there is no degradation of tubulin—which is biologically not 
plausible and which makes the mathematical analysis more difficult—and no active transport 
of tubulin. 

The model reveals that small differences in (dis)assembly rates between two branches 
emanating from the same cell body, and thus competing for the same pool of tubulin, can 
result in retardation in growth of one branch while the other grows. If the elongating branch 
stops growing (say, it has reached its synaptic target), the dormant branch then starts growing 
after some delay. Such apparent competitive growth is seen in cells grown in culture (G.J.A. 
Ramakers, unpublished results). It remains to be determined whether this is actually due to 
competition for tubulin. 
 
4.3.5 Compartmental Models 
 
To move closer to the underlying biophysics of growth and branching requires the 
specification of ever more detailed models. A first step in this direction is to extend the 
compartmental modelling framework commonly used to investigate intracellular (particularly 
electrical) properties of morphologically static neurons. This framework subdivides the 
structure of a neuron into small compartments such that quantities of interest (such as 
membrane potential or molecular concentration) are assumed to have constant value 
throughout a compartment. 

A compartmental model of the diffusional model (Section 4.3.3) requires dividing each 
segment of the dendritic tree into short compartments. The model must calculate the 
concentration of the branch-determining substance in each compartment and its diffusion 
between compartments.  The novelty of the situation is that the morphology of the tree is not 
fixed, so that new compartments must be added or subtracted as the tree grows. Appropriate 
algorithms for the addition and deletion of compartments are under investigation (Graham and 
Van Ooyen, 2001). For stable calculation of diffusion and accurate determination of 
concentrations, finite compartment sizes must be maintained and care must be taken to ensure 
conservation of material during growth. Such compartmental models allow the investigation 
of more complex situations in which inhomogeneities along segment lengths can be 
incorporated. These include the degradation and interaction of molecules as they are 
transported, or the formation and maintenance of synaptic connections. 
 
4.4 Discussion 
 
This chapter has focused on the question of how to understand the emergence of neuronal 
morphology from a developmental point of view. The modeling approaches have clearly 
contributed to this understanding. The dendritic growth model has shown how morphological 
variability arises from stochasticity in growth cone elongation and branching. The intracellular 



Ch4_VanPelt.doc 

 

18 

origins of the global assumptions in the dendritic growth model have been explored, and this 
has given further insight into the possible biophysical mechanisms underlying the dependence 
of the branching probability on the number of terminal segments and on their centrifigal order. 

Our models may also be seen as an attempt to link different levels of biological 
organization, by integrating (in a quantitative way) phenomena and mechanisms at the level of 
molecules, growth cones and dendritic morphology. Clearly, these are only first steps towards 
a full, quantitative understanding of how neuronal morphology arises from the cellular 
machinery in interaction with, and in response to, the many intracellular and local 
environmental factors.  

Important considerations in all modeling studies are the spatial and temporal scales of 
abstraction. In the dendritic growth model, neuronal development has been approximated by a 
sustained process of elongation and branching, thereby implicitly assuming a time scale at 
which ‘ rapid’  alterations are averaged out. The models that implement intracellular processes 
look at a more granular level and may therefore be more suitable for describing dendritic 
remodeling, dendritic regression, and activity-dependent plasticity. 
 
Future modeling studies  
 
Further modeling work will increasingly be confronted with the multitude and complexity of 
the processes involved in dendritic growth. Several strategies may be followed in future work. 
First, we may search for general principles of organization, assuming that the concerted 
actions of the many mechanisms involved serve simple and robust functional goals. 
Homeostasis (of, for example, the level of electrical activity or the intracellular calcium 
concentration—see Chapter 6) is one such functional goal. Second, we may focus on 
particular biophysical processes and explore their effects on dendritic growth. Examples of 
such processes are the (de)polymerization of cytoskeletal elements and the production and 
transport of structural proteins (e.g., tubulin, MAPs). Third, we may follow a brute force 
approach by including in a computational model all actors and structures presently known to 
be involved in growth cone behavior and neurite outgrowth. Such an approach will 
undoubtedly lead to a highly complex model, but it may allow the computational study of 
neurite outgrowth in relation to any parameter involved. 
 
Future experimental studies 
 
In order to validate the models, predictions from the modeling studies must be complemented 
by experimental investigations. Our models have made a number of predictions that can be 
tested experimentally. 

Given a population of dendritic trees of neurons at some stage of development, the 
dendritic growth model can calculate, from the observed standard deviation and mean of the 
number of terminal segments in the population, the value of the competition parameter E and 
from this predict (see Fig. 4.2B) what the standard deviation should be at another stage of 
development (e.g., at a later stage of development, when the mean number of terminal 
segments has increased). This thus provides a relatively straightforward way of testing the 
dendritic growth model. 

Another prediction of the dendritic growth model is that after splitting of a growth cone, 
the daughter branches should already have a small initial length. The model also predicts 
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quantitative values for the elongation rate of the growth cone (see Table 4.3). 
The intracellular signal and diffusional models predict the likely effects of the 

differential transport of a growth-determining substance, such as tubulin, on the branching 
patterns formed by the growing neurite. 

A significant outcome of the elongation model is the prediction of competition between 
elongating neurites (of the same neuron). Such apparent competitive neurite growth has 
indeed been observed in neurons grown in culture (G.J.A. Ramakers, unpublished results). To 
test whether this is due to competition for tubulin, as our model suggests, the concentration of 
tubulin in growth cones should be monitored. The model predicts that the concentration of 
tubulin in growth cones that are not growing out should be below the critical value (i.e., the 
concentration of tubulin at which assembly ( iiCa ) just equals disassembly ( ib )). 

The model by Hely et al. (2001) predicts what the form of the dose-response functions 
relating calcium with phosphorylation and dephosphorylation should be to obtain trees in 
which the terminal segments are longer than the proximal segments or to obtain trees in which 
the terminal segments are shorter than the proximal segments. Thus, to test the model, these 
dose-response functions can be measured in neurons with different branching patterns. 
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