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Abstract. There 1s experimental evidence that neuronal electrical activity directly influences neurite
outgrowth during the development of the nervous system. Using model studies, Van Ooyen and
Van Pelt extensively investigated the effect of this phenomenon upon network development and
architecture. Their studies are based on the experimental observations that there is an optimal range
of electrical activity at which neurite outgrowth takes place. In their model, neurite growth occurs
If the activity level of the neuron is below a certain threshold, otherwise the neurite retracts. We
extend their results to include a more complete description of the relationship between electrical
activity and neurite outgrowth. This takes into account the experimental observation that outgrowth
ceases not only when neuronal activity is too high, but also when it is below a certain threshold. The
modified model displays a wider range of behaviours during network development. In some cases,
for example, growth is only transient and 1s followed by a total loss of connections in the network. As
a consequence of the larger spectrum of possible behaviours, the mechanisms for control of network
formation, by the network’s internal dynamics as well as by external inputs, are also increased.

1. Introduction

Electrical activity plays a pivotal role in the development of neurons into functional
neural networks. Besides changes in synaptic strength, many other processes are
also activity-dependent, e.g., neurite outgrowth (for a review see [1]). The higher
the electrical activity of the neuron the larger is the concentration of intracellular
calcium ([Caz"’]m), which mediates modifications in outgrowth [2, 3]. The empir-
ical observations are summarized in the ‘calcium theory of neurite outgrowth’,
which states that there is a range of [Ca? lin, or level of electrical activity, where
outgrowth takes place, while higher or lower concentrations, or electrical activity,
cause neurites to retract [2, 4-7].

Simulation models allow us to unravel the possible implications of activity-
dependent neurite outgrowth for neuronal morphology and network formation.
This has been done extensively for what we will call the ‘low calcium hypothesis’.
This states that neurite outgrowth or retraction take place when the level of electrical
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activity is respectively below or above a certain threshold [8—10]. Here we study
the ‘optimal calcium hypothesis’, which states that neurite outgrowth occurs within
a range of activity, while above and below this range neurites retract.

2. Model

In this section a summary is given of the model used in [8]. The electrical activity of

a neuron is governed by the shunting model [11]. For a purely excitatory network
of N neurons, we have:

| N
n— = —zi+ (A — i) )} wiif(z) (1)
J=1

where z; is the membrane potential of the :th neuron, 7 1s the membrane charg-
ing/discharging time constant, f is the neuron’s transfer function, f(z) denotes the
mean firing rate of a neuron subjected to activation z, w;; 1s the connection strength
between neuron 7 and j, with w;; > 0, and A > 0 1s the reversal potential.

The model neurons reside on a two-dimensional surface. They receive no exter-
nal inputs, but display a low spontaneous background activity (i.e., for small z,
f(z) > 0). Growing neurons are modelled as expanding circular areas, or ‘neuritic
fields’, representing axonal and dendritic extensions. When two such fields over-
lap, w between the cells is proportional to the area of overlap; w thus represents
axo-dendritic as well as dendro-dendritic interactions. The growth of the radius ()

of each field depends on the electrical activity of the neuron through an equation
of the form:

al?;
P H(z;) (2)
where H is the growth function for an individual cell.

3. Global Description

Provided the variations among the individual cells are small relative to the average
values, the global behaviour of the network in terms of average membrane potential
X and average connectivity W can be described by [3]:

dX
==X+ (1- X)WF(X) 3)
aW
W _ 46(%), @

where Equation (3) is the transformed shunting Equation [10], F'(X) is the nor-
malized firing rate or neuronal transfer function, and ¢ a very small parameter
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Figure 1. The S-shaped slow manifold with indication of important points.

(0 < g < 1). The function G has the same essential characteristics as the ‘individ-
ual’ growth function H (Equation (2)), which are described in Section 4.

We consider the extreme case in which X instantaneously relaxes to its equi-
librium value for a given W, which is a valid approximation considering that
outgrowth takes place on the time scale of days and neuronal dynamics on the time
scale of seconds. The slow evolution of the system, determined by the dynamics of
W, takes place along the so-called slow manifold. This manifold is defined as the
set of points in the (W, X )-plane where d X /dT" = 0 [Equation (3)], thus the set of
points (S(X), X) where S is the function defined by S(X) = X/((1 — X)F(X)).

As shown in [8], a hysteresis relationship between W and X together with
activity-dependent changes in W, can lead to a transient overproduction with
respect to W during development (‘overshoot’). One way of obtaining a hysteresis
relationship is to have an S-shaped slow manifold, 1.e., one which has exactly two
turning points where S’ changes sign [12].

We assume that F'(X) is such that there exists an S-shaped slow manifold with
turning points (Wi, X1) and (W5, X;) where W = S(X;) and W, = S(X>) (see
Figure 1). This condition is satisfied by sigmoidal transfer functions.

The sign and the zeros of G are the relevant factors determining the evolution
of trajectories of the system (3—4) on the slow manifold. Equilibrium points of this
system are zeros of the growth function situated on the slow manifold, i.e., points
E; = (Wg,¢) foriin {1,2,...} with G(¢;) = 0.and W,; = S(e;).

We further use the following nomenclature to describe points and branches
of the S-shaped manifold (Figure 1). The part of the slow manifold connecting
(0,0) and (Wi, X) is called the lower branch, the part connecting (W1, X) and
(W5, X5) the middle branch, and the part from (W3, X;) to (oo, 1) the upper
branch. When, starting at (W, X;), W is made only slightly larger than Wy, the
trajectory jumps to a point on the upper branch. In our approximation this is the
point where the vertical line going through W intersects the slow manifold, 1.e.,
point (W1, z;) with S(2z1) = W;. Similarly, starting at (W5, X»), when W' is made
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only slightly smaller than W5, the trajectory jumps to (W5, 2;) on the lower branch
with S(z) = W,.

4. Results

In previous studies [8, 9] it has been assumed that G has a unique zero € with

for X >e¢ G(X) <0 (5)

{for X <e GX)>0
and G'(e) < O.

In this case, system (3—4) has a unique equilibrium point at £ = (S(¢), €),
which is unstable when situated on the middle branch (X < € < X»), and stable
when on either the lower (¢ < X)) or upper branches (X, < ¢).

We now consider a growth function G that 1s assumed to be a smooth function
with exactly two zeros, €1 < €, such that G'(e;) < 0 < G'(¢€1). System (3-4)
has now two equilibrium points, E; = (W, €;) for ¢ in {1,2} with S(¢;) = W;.
We constrain Ej to the lower branch of the slow manifold, 1.e., ¢; < X;, where
the unstable equilibrium point F; is a saddle point. The global behaviour of the
system depends on the position of the two equilibria. If 0 < €1 < € < X
0 < €1 < X1 < Xy < e < 1, respectively), F» 1s a stable point situated on the
lower (respectively upper) branch of the slow manifold. The basin of attraction of
FE is the set of initial conditions with trajectories converging to Es.

The following cases can be distinguished:

o If W.; < W>, and €, on the upper or lower branch, the basin boundary 1s the
vertical line going through F, (approximately the stable manifold of saddle
node F;), and all trajectories with initial conditions (W, X') with W > W,
will converge to £, [Figure 2(al)].

e If W.; > W5, and €, is on the upper branch, all trajectories with initial
conditions (W, X') with W > W, will converge to E», as well as those with
W, < W < W, and X above the middle branch [Figure 2(a2)].

e If W,; > W>, and ¢; is on the lower branch, all trajectories with initial
conditions (W, X) with W,; < W < W; and X below the middle branch will
converge to F, [Figure 2(a3)].

Only for 0 < €; < X1 < X3 < € < 21 does the connectivity W go through
a transient overproduction for certain initial conditions [e.g., points on the lower
branch of the slow manifold for which W > W,,; see Figure 2(b1l), (b2)].

e« At ¢ = X; (e = X», respectively) there is a Hopf bifurcation, and for
0 < e < 2 < X < € < X, there is a stable limit cycle with a basin
of attraction bounded by the vertical line going through E;. All trajectories
with initial conditions (W, X) with W > W, converge to this attractor
[Figure 2(c1)].

In all of the above situations, the unstable point F; acts as a threshold below which
activity is not effective for growth of connectivity. For points that are ‘below’ this
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Figure 2. Growth function with two zeros: G(X) = (X — e)(e2 — X)), and ¢ = 0.05.

F(X)=1/(1+ el—X)/e) with @ = 0.5 and @ = 0.1. The thin horizontal lines indicate e;
and e,. The grey area in (al)—(a3) is the basin of attraction of equilibrium point £ (intersection
point of manifold and X = e3), and in (cl) that of the limit cycle attractor; the bold lines
are the basin boundaries. The arrows indicate the direction. of the trajectories. All points are
almost instantaneously attracted (relative to the dynamics in W) to the upper or lower branch
of the manifold, along which the slow evolution takes place. In (b1)—(b3), (c2), (c3) and (d1)
the bold lines are trajectories (open circles: initial conditions); (d2) and (d3) show time plots
of (c2) and (c3), respectively. (al), (bl): €, = 0.01, 2 = 0.6, in (bl) the developing network
goes through a phase in which W is higher than in the equilibrium point, thus exhibiting a
transient overshoot in W: (a2), (b2): ¢, = 0.04, €2 = 0.8; (a3), (b3): ¢; = 0.02, €2 = 0.08;
(c1), (d1): & = 0.01, e2 = 0.3; (c2), (d2): &1 = 0.03, &2 = 0.3; (c3), (d3): &1 = 0.01455,
€2 = 0.3.
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threshold, the connection weight decreases to zero. If the system is above this
threshold, its behaviour is similar to that of a system with a growth function having
a single zero at e;.

* For ¢ = 2 < X < € < Xy, the stable manifold of the saddle node
E coalesces with the limit cycle, 1.e., a homoclinic orbit, which attracts
trajectories of all points enclosed in it [Figure 2(c3)].

o If 2 < €1 < X| < g < X3, there will be a transient increase in both X
and W for some 1nitial conditions (e.g., points on the lower branch of the
slow manifold for which X > ¢1), but eventually for all trajectories except the
equilibria and the set of trajectories tending to E; (i.e., the stable manifold of
the saddle node), W will reach zero [Figure 2(c2)].

S. Discussion and Conclusion

A transient overproduction with respect to connectivity (‘overshoot’), which consti-
tutes an important phenomena during nervous system development, was observed
in the model based on the low calcium hypothesis [8]. This behaviour can also be
reproduced 1n the model based on the optimal calcium hypothesis. However, under
the latter hypothesis, the neurons need to have a sufficient level of initial activity
for growing out in order for the network to display an overshoot in connectivity. As
the model shows, a high enough 1nitial activity for growing out is not a sufficient
condition to develop a network. In fact, after a transient growth, all the connections
in the network might eventually disappear (Figure 2(c2) and (d2)). This situation
1S not possible in the model based on the low calcium hypothesis, where under the
same conditions the connectivity will oscillate.

In this study we have focussed on the global behaviour of the network, using a
description where variability among neurons is discarded. The validity of approxi-
mating the global behaviour of the network with system (3—4) for small variability
among neurons was tested on the complete model consisting of N neurons. Gen-
erally it was found that this approximation 1s valid under small structural inhomo-
geneities (positions of the neurons), variability in the parameters of the neuronal
transter function, in the outgrowth rate ¢, and within a restricted range in the zeros
of the outgrowth function. Numerical investigations showed that also small varia-
tions in the initial conditions, with respect to membrane potential and radius of the
neuritic field, do not affect the global dynamics.

Large variability among neurons are expected to generate new behaviours not
covered by the global description. Preliminary numerical investigations show that
large variations in initial connectivity may lead to cluster formation through retrac-
tion of neurons that are i1solated from others and are not active enough to grow
out. Such neurons are not capable of establishing durable connections with other
neurons. In other words, they become functionally irrelevant, which may explain
the actual neuronal death observed during the development of the nervous system
[13], especially when [Ca®*];,, is substantially below resting levels [14]. Due to
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neurite retraction in these neurons, the network may become subdivided into clus-
ters within which the neurons are tightly interconnected, and between which there
are fewer connections.

External excitatory stimulation during network formation will rise neuronal
activity and thus may prevent neurite retraction in weakly connected or inactive
neurons. Neurons that without external input did not become part of the network
may do so as a result of external stimulation. External excitatory input onto already
active neurons, in contrast, may induce retraction. External inhibitory stimula-
tion will have the opposite effects. These mechanisms provide efficient means of
external control during network development.

Large variability may also exist in the range of electrical activity for which
outgrowth takes place, i.e., neurite outgrowth does not have to occur for the same
range of electrical activity for all neurons in the network (i.e., different €; values
for different neurons). In this case a selection process may take place during
development. Only neurons that have a range of outgrowth appropriate for network
parameters, will eventually become connected into the network, while others are
effectively deleted, possibly after a transient growth. Thus the neurons with an
optimal range for outgrowth become selected during network formation. One may,
therefore, start development with neurons that differ with respect to the range of
activity where outgrowth takes place. |

Concluding, the model based on the optimal calcium hypothesis displays a
wider range of behaviours during network development than the one based on the
low calcium hypothesis. As a consequence of this, the mechanisms of control of
network formation by the network’s internal dynamics as well as by external input

are also expected to increase. Currently, these expectations are being tested in the
complete model consisting of /V neurons.
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