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Abstract
Knowledge about the relationship between morphology and the function of
neurons is an important instrument in understanding the role that neurons play
in information processing in the brain. In paricular, the diameter and length of
segments in dendritic arborization are considered to be crucial morphological
features. Consequently, accurate detection of morphological features such as
centre line position and diameter is a prerequisite to establish this relationship.

Accurate detection of neuron morphology from confocal microscope
images is hampered by the low signal to noise ratio of the images and the
properties of the microscope point spread function (PSF). The size and the
anisotropy of the PSF causes feature detection to be biased and orientation
dependent.

We deal with these problems by utilizing Gaussian image derivatives for
feature detection. Gaussian kernels provide for image derivative estimates with
low noise sensitivity. Features of interest such as centre line positions and
diameter in a tubular neuronal segment of a dendritic tree can be detected
by calculating and subsequently utilizing Gaussian image derivatives. For
diameter measurement the microscope PSF is incorporated into the derivative
calculation.

Results on real and simulated confocal images reveal that centre line
position and diameter can be estimated accurately and are bias free even under
realistic imaging conditions.

1. Introduction

In neuroscience, knowledge regarding the relationship between neural morphology and
function is considered to be of key importance to gain insight into the working principles
of neural structures [1–3]. Morphological features of biological interest manifest themselves
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at different spatial scales [1]. At intermediate scales features of interest are the spatial coverage,
shape complexity measures (e.g. integrated curvature) and the dendrogram representation of
a neuron. These features are used for classification into different cell classes that can be
related to differences in physiological behaviour [3]. At a smaller scale the shape and size of
individual neuronal segments combined with the dendrogram are crucial to relate electrical
signal processing in the dendritic tree to neuron morphology. In the modelling of the electrical
behaviour of the neuron the 3D positions of segments and bifurcations with respect to each
other are usually not incorporated. Full 3D reconstruction of the neuron would allow more
realistic electrical modelling for cases where electrical interaction between different parts of
the structure is substantial.

Basic features consisting of the topology of the neuron (i.e. the dendrogram), the positions
of the centreline of the segments constituting the skeleton of the tree, the diameter at each centre
line position and the positions of bifurcations and end points of segments are sufficient to derive
the morphological and electrical features mentioned above.

A number of methods are available to detect centre lines in tubular structures from 3D
images. Two representative examples in medicine and biology are medial axis determination
methods in a colon [4] and in chromosomes [5] respectively. These methods are based on
widely used topology preserving thinning methods in binary images. These methods heavily
rely on thresholding. The extraction, however, of basic features from 3D confocal microscope
images turns out to be complicated by noise and distortions present in real images. Moreover,
the intensity levels of the neural segments as present in the image may vary along the neural
tree. Consequently, thresholding the image is often unreliable and makes utilization of grey
value information a prerequisite for accurate feature detection.

Although feature extraction methods as implemented in commercial products are available,
they are usually also based on a thresholded image. Therefore the performance of these methods
is not optimal and improvements on these methods are required.

The resolution of the optics in a confocal microscope is characterized by its 3D point
spread function (PSF). The dimensions of the PSF resemble the lower limit of object sizes
that can be properly imaged. The PSF causes the appearance of a small object in the image
to be blurred compared to the real object in the sample. In confocal images of neuron cells
the diameters of the neural segments may be of the same order of magnitude as the size of
the microscope PSF. Consequently, neural segments will appear blurred in the image. The
blurring will influence diameter measurement and introduce a bias in the diameter estimates.
An appropriate method for diameter measurement from confocal images should therefore take
the influence of the PSF on the diameter estimate into account. However, current methods for
diameter measurement omit the influence of the PSF and therefore yield biased results.

In this paper we focus our attention on the detection of basic features of 3D tubular
structures as they appear in 3D confocal images [6]. The feature extraction methods we describe
are based on a combination of scale space theory and differential geometrical principles [7–11].
We show that these grey value based methods provide for an accurate and automatic detection
of centre line position and diameter of tubular structures. A second topic we investigate is the
magnitude of the bias introduced by the microscope PSF in the diameter measurement and we
present a method to correct for it.

2. Detection of morphological features in tubular structures

2.1. Image derivatives for feature detection

The methods that we present for feature extraction are based on the use of spatial derivatives
of the intensity function I (x, y, z) representing the image. In practice these spatial derivatives
are calculated from the 3D image data as obtained with the confocal microscope.
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Figure 1. First- and the second-order Gaussian derivatives kernels for 2D images. A kernel
represents the relative weighting of the pixels within the area that is used for the calculation of the
image derivatives.

An approximation of a first-order spatial derivative in an image I (x, y, z) can be obtained
by computing the intensity difference of two adjacent voxels. The disadvantage of this method
is that the resulting derivative estimates are sensitive to the noise in the intensity values of
the individual voxels. A better way is to use more voxels in the neighbourhood of the point
(x, y, z) where the derivative has to be calculated. This can be realized by convolving the image
with a derivative kernel. In our methods we use the derivative of a Gaussian as the derivative
kernel. Figure 1 shows the shape of the first- and the second-order Gaussian derivative kernels
for calculation of image derivatives in 2D images I (x, y). A kernel represents the relative
weighting of the pixels within the area that is used for the calculation of the image derivatives.
By convolving the image with a Gaussian derivative kernel the image derivative is effectively
calculated in an image I (x, y, σ ) which is the original image I (x, y) smoothed by a Gaussian
G(x, y, σ ). This is due to the associativity of the linear derivative and convolution operators,
e.g.

∂

∂x
(I (x, y) ∗ G(x, y, σ )) = I (x, y) ∗ ∂G(x, y, σ )

∂x
, (1)

where ∗ denotes the convolution operator. The scale parameter σ defines the effective region
around a certain point that is used for the calculation of the derivative value.

For 3D images analogue kernels exist. These kernels are not shown here since they cannot
be plotted in a single graph as for the 2D case. The 3D derivatives are obtained by convolution
of the original image I (x, y, z) with the appropriate Gaussian derivative kernels

I (x, y, z, σ ) = G(x, y, z, σ ) ∗ I (x, y, z),

Ii (x, y, z, σ ) = ∂G(x, y, z, σ )

∂i
∗ I (x, y, z), (i = x, y, z)

Ii j (x, y, z, σ ) = ∂2G(x, y, z, σ )

∂i∂ j
∗ I (x, y, z), (i j = xx, xy, xz, yy, yz, zz)

(2)

with

G(x, y, z, σ ) = 1

(
√

2πσ 2)3
exp

(
− x2 + y2 + z2

2σ 2

)
. (3)



384 G J Streekstra and J Van Pelt

Utilization of Gaussian derivative kernels enables optimal use of grey value information present
in the image. The extension of the kernel over a volume around the voxel under consideration
provides for derivative values that are rather insensitive to noise and irregularities in the image.
By using Gaussian derivatives methods can be developed that are invariant with respect to
intensity fluctuations along the dendritic tree. Such methods are based on the shape of the gray
value pattern rather than on the absolute intensity values. In the following sections we will
demonstrate the usefulness of Gaussian derivative kernels in centre line detection and diameter
measurement procedures.

2.2. Centre line detection

The centre line detection method that we propose to use for neuron tracing is based on a
method that has been described in previous reports [8–11]. Here we recall the essentials of
this derivative based method. Here we recall the essentials of this derivative based method.

The starting point of the method is the analysis of the second-order Gaussian derivatives in
the image. At the centre line of tubular structures in an image like that of a neuron the second-
order derivative in the centre line direction is much smaller than in the directions perpendicular
to the centre line [12, 13]. Another property of a tubular structure in an image is that the first-
order derivatives at the centreline vanish. These two properties can be used to find the centre
line position.

The second-order derivative property is used to find the direction of the centre line. To
this end we estimate all second-order Gaussian derivatives at a certain discrete position Pd in
the image. The second-order Gaussian derivatives are used to build the 3 × 3 Hessian matrix

H =
( Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

)
. (4)

Arguments are left out here for brevity. The Hessian matrix H represents the second-order
structure of local intensity variations around the 3D point under observation. From H we
calculate the eigenvaluesλt , λn , λm and the corresponding eigenvectors t, n and m which form
the orthonormal base for a local Cartesian coordinate system. The vector t which is aligned to
the line direction (see figure 2) is the eigenvector with the smallest absolute eigenvalue λt , i.e.

|λt | � |λn|, |λm|. (5)

In the plane perpendicular to the line direction the grey value distribution can be approximated
by a second-order Taylor polynomial

I (ξ, η) = I + p · ∇ I + 1
2pT · H · p. (6)

In equation (6) p is a vector in the plane defined by n and m, i.e.

p = ξn + ηm. (7)

I and ∇ I are the grey value and gradient vector at the discrete position Pd. The position of
the centre line Pc relative to Pd is found by setting the gradient of the local Taylor polynomial
to zero [9]:

∇ I (ξ, η) = 0 (8)

and solving η and ξ from the resulting linear equation. The actual sub voxel centre line position
Ps is calculated by

Ps = Pd + Pc. (9)

In a discrete image Ps will only be a centre line point if it is within the boundaries of the
discrete voxel position Pd.
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Figure 2. 3D line structure with local eigenvectors t, n and m of the Hessian matrix and
corresponding eigenvalues λt , λn , λm . The eigenvector t with the smallest eigenvalue in magnitude
|λt | is in the local direction of the line.

The centre line detection method mentioned in this section imposes only minor constraints
on the shape of the intensity profile across the tube. In images of neurons cross sections are
usually close to circular. In a circular cross section λm = λn and obviously a single centre line
position will be found in this case. For a non-circular cross section the analysis of the Hessian
matrix will yield λm �= λn . Although λm and λn may be unequal they are generally non-zero
and by utilizing equation (6) a single centre line position will be found. Consequently, the
only requirements to be fulfilled for successful centre line detection are equation (5) and a first
derivative that vanishes at the centre line. These requirement are usually fulfilled for a tubular
structure with arbitrarily shaped cross section.

2.3. Diameter measurement

For diameter estimation it is necessary to take the shape of the 2D grey value profile across the
line into account. We assume that the intensity profile I (r) is bounded by the general condition

I (r) =
{

I0 f (r) (r � R)

0 (r > R).
(10)

In equation (10) I0 is the grey value at the centre line and r represents the radial position
relative to the centre line. We demand that the first derivative of f (r) vanishes at the centre
line.

We use the theoretical scale dependencies of I (r) convolved with a Gaussian and the
second Gaussian derivatives of I (r) at the centre line position (r = 0) to estimate the line
diameter. For this purpose expressions are derived for the Gaussian blurred intensity I (R, σ )

and the Laplacian �⊥ I (R, σ ) restricted to the span of n and m. At the centre line position
the convolutions involved in the calculation of I (R, σ ) and �⊥ I (R, σ ) reduce to simple two-
dimensional integrals:

I (R, σ ) = I0

∫ 2π

0

∫ R

0
f (r)g(r, σ )r dr dθ (11)

�⊥ I (R, σ ) = I0

∫ 2π

0

∫ R

0
f (r)grr (r, σ )r dr dθ. (12)
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Figure 3. A pillbox shaped and a parabolic line profile.

In (11) and (12) g(r, σ ) and grr (r, σ ) are the 2D Gaussian and its second derivative in the
r -direction. The expressions for I (R, σ ) and the Laplacian �⊥ I (R, σ ) are used to construct
a nonlinear filter which is rotation invariant with respect to the line direction and independent
of I0:

h(R, σ ) = − I (R, σ )

σ 2 1
2�⊥ I (R, σ )

. (13)

The denominator in (13) represents the 2D Laplacian based on normalized second
derivatives [14].

The theoretical filter output h(R, σ ) is dependent on the choice of f (r). For a parabolic
and a pillbox profile (see figure 3) the integrals appearing in (11) and (12) can be evaluated
analytically. For a pillbox profile we find

h(q) = (1 − e−q)

(qe−q)
(14)

and for a parabolic profile

h(q) = (1 − e−q) − q

(qe−q) − (1 − e−q)
(15)

with

q = 1

2

(
R

σ

)2

. (16)

Equations (14)–(16) show that for the pillbox and the parabolic profile h(R, σ ) is only
dependent on the dimensionless parameter q that contains both the scale σ of the derivative
kernel and the unknown radius R of the line profile.

Figure 4 shows that h(q) is a monotonous increasing function of q . This property makes it
possible to estimate q by comparing the filter output hm measured at scale σ with the theoretical
filter function h(q). If hm is measured and the shape of the profile is known q can be estimated
by solving the equation

h(q) − hm = 0. (17)
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Figure 4. Theoretical line diameter filter output h(q) for a pillbox profile (solid curve) and a
parabolic profile (dashed curve). Parameter q is dimensionless and only dependent on R and σ

(q = 1
2 (R/σ)2).

By a simple bi-sectioning method the root q0 of (17) is found. For a given choice of σ the
corresponding R is found by solving (16), i.e.

R = σ
√

2q0. (18)

2.4. Incorporating the point spread function in the diameter measurement procedure

An accurate diameter measurement in a neuronal segment is of key importance for modelling
of the morphological properties of a dendritic tree. Therefore it is necessary to be aware of
possible errors in diameter estimation due to the characteristics of the imaging system. A
fundamental property of any imaging system is its finite resolution. Resolution significantly
influences diameter estimation if it is of the order of magnitude of the diameter of the neuronal
segment. This is often the case in practical imaging situations. In a confocal microscope
resolution is governed by the 3D point spread function PSF of the system [6]. Ideally the
PSF would have zero width. In that case the system correctly images the true fluorochrome
distribution in the image. In case of tubular structures the image would represent the neuronal
segments as they are present in the sample.

The non-zero width of the PSF, however, causes the tubular structures to appear blurred
in the image (figure 5). This is a consequence of the fact that the detected image is a 3D
convolution of the tubular objects in the sample (i.e. the fluorochrome distribution) with the
microscope PSF. The corresponding intensity profile across the tube in the image is therefore
not pillbox shaped any more (see figure 6). The diameter estimation method as presented in
the former section will yield a biased estimate since it assumes a pillbox shaped line profile
across the tube. Moreover, the anisotropy of the PSF makes the estimated diameter dependent
on the orientation of the tubular structure with respect to the imaging axis (see figure 7).

To compensate for the influence of the PSF we incorporate its properties into the diameter
measurement method. For that purpose we model the PSF by an anisotropic Gaussian kernel
with scale factors σp,l and σp,a in the lateral and axial directions respectively. This is a
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Figure 5. Two orthogonal cross sections of a tubular segment (upper panels: true fluorochrome
distribution, lower panels: detected image).

reasonable approximation since a Gaussian closely resembles the shape of a microscope
PSF [17]. The Gaussian model is subsequently incorporated into the measurement kernel
used for the diameter measurement (cf equations (11) and (12)). The effective measurement
kernel is the combination of the Gaussian model of the PSF and an anisotropic Gaussian kernel
used in the image derivative calculations. The mathematical relationship between the Gaussian
model of the PSF, the kernel used for derivative calculations and the effective isotropic Gaussian
measurement kernel Ge(x, y, z, σe) is

Ge(x, y, z, σe) = G p(x, y, z, σp,l, σp,a) ∗ Gm(x, y, z, σm,l , σm,a) (19)

with

G p(x, y, z, σp,l, σp,a) = 1

2πσ 2
p,l

√
2πσp,a

exp

{
−1

2

(
x2 + y2

σ 2
p,l

+
z2

σ 2
p,a

)}
,

Gm(x, y, z, σm,l , σm,a) = 1

2πσ 2
m,l

√
2πσm,a

exp

{
−1

2

(
x2 + y2

σ 2
m,l

+
z2

σ 2
m,a

)}
.

(20)

In equations (19) and (20) G p(x, y, z, σp,l, σp,a) is the Gaussian model of the microscope
PSF and Gm(x, y, z, σm,l , σm,a) the measurement kernel that serves as basis for the derivative
calculations. The scales σm,l and σm,a are assigned a value that results in an isotropic effective
kernel with scale σe [18] (see figure 8). The relationship between the scale parameter σe of
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Figure 6. Profiles of radial cross sections of a tubular object, the microscope point spread function
(P S F(r)) and the resulting image. The profile apparent in the image I (r) is the convolution of the
object profile f (r) with P S F(r).

the effective kernel and that of the PSF and the anisotropic measurement kernel (σp,l, σp,a and
σm,l , σm,a ) is as follows:

σe =
√

σ 2
p,l + σ 2

m,l =
√

σ 2
p,a + σ 2

m,a . (21)

By choosing σe and known values of σp,l and σp,a the values of σm,l and σm,a that have to be
applied for the measurement kernels are

σm,l =
√

σ 2
e − σ 2

p,l

σm,a =
√

σ 2
e − σ 2

p,a .

(22)

The scale σe of the effective kernel is used in (11)–(18) for the diameter estimation.

3. Results

3.1. Centre line detection

The applicability of the centre line detection method is illustrated in two different examples
of 3D biological tubular structures (figure 9). The images were obtained using a confocal
microscope. The centre line positions were detected by tracing along the axis of the tubular
structure. After manual setting an initial position in the tubular structure subsequent centre line
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Figure 7. The shape of PSF of a confocal microscope with a high numerical aperture lens. The
PSF is approximated by a 3D Gaussian with scales σp,l and σp,a in the lateral and axial directions
respectively.

Figure 8. Shapes of the PSF, the anisotropic measurement kernel that serves as a basis for the
derivative calculations and the effective isotropic kernel used for diameter estimation.

positions were found by taking a step into the line direction and application of the centre line
detection method. The experiments reveal that the centre line estimation method converges to
the optimal centre line position as long as the scale of the differentiation kernels was chosen
larger than the radius R of the intensity profile across the line. Taking this constraint imposed
on the scale into account the method is capable of measuring centre line positions even in
the noisy image of the neuron cell (figure 9, right image). In the image of the Spathiphyllum
pollen grain (figure 9, left image) the method allows for tracing highly curved line segments.
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Figure 9. Tracing results in 3D images of a biological specimen (left: a Spathiphyllum pollen
grain, right: a pyramidal neuron cell). The images were obtained using a confocal microscope.
The black dots in the right panel represent the estimated centre line positions.

Figure 10. Relative bias in estimation of radius R of the line structure as a function of R. The
squares and the dots represent measurements on tubular structures with a pillbox and a parabolic
profile respectively.

3.2. Diameter measurement

To evaluate the performance of the line diameter estimation method synthetic images containing
straight line segments with circular cross section were used (see figure 5, upper panels). The
diameter of the line segment was varied between 2 and 15 voxels. Both pillbox shaped and
parabolic intensity profiles were evaluated. The diameter estimate turned out to be independent
of the setting of σ in the range where 0.2 < R/σ > 2. In the synthetic images the bias in the
estimated diameter is always below 5% (see figure 10).

The diameter measurement procedure was also tested on a biological 3D image from
a confocal microscope containing a Spathiphyllum pollen grain (figure 9, left panel). The
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Figure 11. Results of diameter measurement of a tubular structure in a confocal image. The dots
are intensity values I (r) as a function of the distance from r from the centre line position. The
intensity values I (r) are obtained from a cylindrical volume element with its axis coinciding with
the centre line. The scale used for the derivative estimations was varied between 2.0 and 5.0. The
vertical arrows along the x-axis indicate the outer limits of the range of the diameter measurements
using a pillbox profile (left) and a parabolic profile (right).

diameter was measured at scales varying between 2.0 and 5.0. Within this range of scales the
diameter measurement deviates only 6% for the parabolic profile as a model used (figure 11).

In case the pillbox profile is used the diameter measurement procedure fails since the
profile is obviously not pillbox shaped. As can be seen in figure 11, the parabola also does
not correctly resemble the shape of the measured intensity profile across the tubular structure.
Assuming that the fluorochrome is homogeneously distributed in the tubular structure the effect
of the microscope PSF is clearly visible in the image data (cf figure 6). Similar effects were
observed in tubular segments of neuron cells.

The large spread in the intensity data is partly due to noise and partly to the anisotropy of
the PSF. This practical example of a biological sample shows that for accurate measurement
the PSF should be taken into account.

To investigate the possible influence of the PSF on the diameter measurement we estimated
diameters in synthetic images of tubular structures as shown in figure 5. In all experiments the
true diameter R0 was chosen to be 5.0 and the ratio between the axial size of the PSF (σp,a)
and the lateral size (σp,l) was chosen to be 3.0 as for a high-aperture microscope objective. In
our experiments we varied the size of the PSF relative to the radius R of the tube. We also
varied the scale σ of the isotropic derivative kernels.

As can be expected the bias in the diameter estimate increases with the size of the PSF
(figure 12). In addition, the size of the derivative kernel relative to R is of importance. The
bias increases with the σ/R ratio.

Figure 13 shows that the effect of the PSF on the diameter measurement can be excluded
by choosing the appropriate anisotropic derivative kernels. In the experiments synthetic tubular
objects were used with values for σp,l/R0 of 0.0 and 0.2. 25% Gaussian noise was added to
the images to create image data that represents realistic imaging conditions. If the scales σm,l

and σm,a are chosen correctly such that the effective kernel is isotropic the estimated value of
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Figure 12. Bias in the diameter measurement as a function of the size of the microscope PSF. The
ratio of the scale σ of the isotropic measurement kernel and R0 is varied between 0.6 and 2.0. Each
diameter value represented in the graph is an average of 128 individual measurements.

Figure 13. Bias free diameter measurement with properly chosen anisotropic derivative kernels.
25% Gaussian noise was added to the original tubular object (diamonds) and the tubular object
blurred with σp,l /R0 = 0.2 (squares).

R is close to the true value R0. The results that represent average data from 128 centre line
positions for each diameter measurement show that the Gaussian derivative kernel effectively
suppress the noise present in the images.
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4. Discussion

Accurate detection of basic features such as the centre line position and diameter in neuronal
structures from confocal images are a prerequisite for reliable reconstruction of neuronal trees
and proper modelling of their electrophysiological behaviour. Existing reconstruction systems
are limited with respect to accurate and reliable measurement of these features.

In this paper we focused on improved detection methods for detection of the centre line
position and diameter in neuronal segments as observed in 3D images acquired with a confocal
microscope.

We demonstrated that Gaussian image derivatives can be employed for feature detection
in 3D image representations of tubular structures like in a dendritic tree. The derivative based
methods allow accurate determination of centre line position and diameter even when they are
blurred by the PSF of the imaging system.

The centre line detection method turned out to be applicable in confocal images of tubular
structures in biological samples. The non-zero size of the kernels ensures derivative values
that are based on a small volume in the neighbourhood of the position where the derivative
has to be estimated. Consequently, the robustness of the centre line detection with respect to
noise and irregularities is guaranteed by the utilization of these derivative kernels.

The method used for diameter measurement is essentially independent of scale of the
derivative kernels as long as a priori knowledge on the shape of the intensity profile across the
tube is present. The method has negligible bias as long as the sampling of the line structure
is larger than approximately 2 voxels. The method fails when the size of the microscope PSF
becomes of the order of magnitude of the diameter of the tubular structure. Bias starts to be
significant when the lateral size of the PSF is as small as 20% of the diameter of the tube. We
showed that it is possible to get an unbiased diameter estimate by incorporating the PSF in the
diameter estimation method. The diameter value turns out to be unbiased even in the presence
of considerable levels of background noise.

The results presented validate our approach in solving the problem of accurate centre line
detection and diameter measurement in neuronal segments. By taking the microscope PSF
into account more accurate detection of segment diameter is possible. Ignoring the microscope
PSF which is common practice in existing systems will lead to erroneous diameter values.

Future research will have to be devoted to testing and tuning of the methods to ensure
adequate measurement of basic morphological features of neurons from 3D confocal image
data.
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